Claims Made Simple: Transforming Medical Reimbursements through Automation

July 26, 2023 By: Atanu Roy

In the ever-evolving healthcare landscape, automated medical claims processing has become paramount in ensuring efficient reimbursement. With many benefits in tow, automating various aspects of the claims process results in seamless operations, fewer mistakes, better financial outcomes for healthcare organizations, and improved customer experiences, manifold.

According to a Black Book Market Research survey, 8 out of 10 hospitals are currently pursuing investments in the automation of their healthcare solutions. By improving claims processing efficiency, these measures will speed up reimbursements, resulting in a positive impact on Revenue Cycle Management for the providers.

To retain their competitive edge, it is imperative that providers take prudent steps for financial optimization by embracing end-to-end automated RCM solutions that can significantly boost reimbursement efficiency and their timely revenue.

This article will delve into the significance of streamlining the medical claims process with end-to-end RCM automation that underscores the transformative power of medical claims processing in the coming years.

Identify and Mitigate Erroneous Medical Claims with Automation

Automated digital healthcare solutions play a crucial role in helping healthcare providers identify and mitigate mistaken claims before insurance companies deny payment, thereby streamlining the claims process and saving hospitals valuable time and money. By leveraging technologies such as hyperautomation (HYA), artificial intelligence (AI), and robotic process automation (RPA), providers can proactively address potential errors to improve the accuracy of claims submissions.

Some of these are illustrated below:

  • Billing and coding errors: Research indicates, 49% of Medicare medical bills contain errors and 57% receive confusing medical bills, leading to claim denials or delays in reimbursement. Inaccurate or incomplete coding, improper documentation, and lack of clarity in medical records result in claim rejections or payment discrepancies.

     

    AI will assist in generating the right ICD and CPT coded for claims processing which eliminates the coding errors drastically to generate the right billing. It helps in reducing the claim denials, improving the turnaround time for payments and efficiency.

  • Complex claim requirements: Payers, such as insurance companies and government programs, have different rules, regulations, and guidelines for medical claims processing. It is complex and time-consuming to navigate payer-specific requirements, including documentation, pre-authorization, and medical necessity criteria.

     

    AHIP study indicates automated medical claims processing was nearly 50% less expensive than traditional methods with a processing time cut down to two weeks maximum. Automated billing generation and claims processing generate detailed super bills which are processed by the health insurance payers electronically through direct or clearinghouse submission, in a faster, better, and more efficient way.

  • Claims fraud and abuse: Medical claims fraud and abuse activities include submitting false claims, inflating medical expenses, providing unnecessary medical services, or misrepresenting patient information. Fortunately, around 90% of these are preventable.

     

    By using AI-driven algorithms, automated medical billing systems can significantly reduce false positives, minimizing the number of fraud alerts while maximizing the detection of actual fraudulent claims. A study suggests effective implementation of automated billing processes and sub-processes can help medical providers save up to $124 million each year. This improves fraud detection and prevention efforts, saving resources for healthcare organizations and insurance providers.

  • Manual processes and administrative burden: Manual processes and administrative burdens involve manual data entry, paper-based workflows, and repetitive actions, leading to inefficiencies, errors, and increased costs. In 2021, the Centers for Medicare & Medicaid Services (CMS) reported $28.91 billion in payment errors as a result of manual coding errors.

     

    Automated medical billing, powered by hyperautomation (HYA) and artificial intelligence (AI) with advanced algorithms, can streamline administrative tasks by automating manual processes, reducing the need for human intervention. JK Tech’s revenue cycle management solution can expedite complex administrative processes, ensuring members receive appropriate care while reducing the administrative burden on payers.

  • Lack of standardized data and interoperability: In the healthcare industry, the lack of standardized data formats and interoperability between different systems and stakeholders poses challenges in claims processing. Inconsistent data formats, incompatible systems, and limited data sharing can hinder the seamless exchange of information between payers, providers, and other entities involved in the claims process.

     

    JK Tech’s automation services address the lack of standardized data and interoperability by implementing robust data integration and transformation solutions by HL7, FHIR integration, etc.

The implementation of end-to-end RCM automation is a crucial aspect to improve the revenue generation and reduce the claim denials for healthcare providers to remain efficient and competitive in today’s dynamic landscape. Automation plays a significant role in this endeavor by streamlining the claims cycle, reducing errors, accelerating processing, and enhancing data management.

Achieving operational excellence and providing top-notch, cost-effective care in the healthcare industry requires embracing cutting-edge technologies such as hyperautomation (HYA), artificial intelligence (AI) and robotic process automation (RPA). End-to-end services like those offered by JK Tech can optimize critical administrative tasks such as patient billing and scheduling. This not only frees up staff to focus on leadership responsibilities and critical decision-making but also enables a new standard of Value-Based Care.

About the Author

Atanu Roy

Chatbot Aria

Hello, I am Aria!

Would you like to know anything in particular? I am happy to assist you.

    • United States+1
    • United Kingdom+44
    • Afghanistan (‫افغانستان‬‎)+93
    • Albania (Shqipëri)+355
    • Algeria (‫الجزائر‬‎)+213
    • American Samoa+1684
    • Andorra+376
    • Angola+244
    • Anguilla+1264
    • Antigua and Barbuda+1268
    • Argentina+54
    • Armenia (Հայաստան)+374
    • Aruba+297
    • Australia+61
    • Austria (Österreich)+43
    • Azerbaijan (Azərbaycan)+994
    • Bahamas+1242
    • Bahrain (‫البحرين‬‎)+973
    • Bangladesh (বাংলাদেশ)+880
    • Barbados+1246
    • Belarus (Беларусь)+375
    • Belgium (België)+32
    • Belize+501
    • Benin (Bénin)+229
    • Bermuda+1441
    • Bhutan (འབྲུག)+975
    • Bolivia+591
    • Bosnia and Herzegovina (Босна и Херцеговина)+387
    • Botswana+267
    • Brazil (Brasil)+55
    • British Indian Ocean Territory+246
    • British Virgin Islands+1284
    • Brunei+673
    • Bulgaria (България)+359
    • Burkina Faso+226
    • Burundi (Uburundi)+257
    • Cambodia (កម្ពុជា)+855
    • Cameroon (Cameroun)+237
    • Canada+1
    • Cape Verde (Kabu Verdi)+238
    • Caribbean Netherlands+599
    • Cayman Islands+1345
    • Central African Republic (République centrafricaine)+236
    • Chad (Tchad)+235
    • Chile+56
    • China (中国)+86
    • Christmas Island+61
    • Cocos (Keeling) Islands+61
    • Colombia+57
    • Comoros (‫جزر القمر‬‎)+269
    • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
    • Congo (Republic) (Congo-Brazzaville)+242
    • Cook Islands+682
    • Costa Rica+506
    • Côte d’Ivoire+225
    • Croatia (Hrvatska)+385
    • Cuba+53
    • Curaçao+599
    • Cyprus (Κύπρος)+357
    • Czech Republic (Česká republika)+420
    • Denmark (Danmark)+45
    • Djibouti+253
    • Dominica+1767
    • Dominican Republic (República Dominicana)+1
    • Ecuador+593
    • Egypt (‫مصر‬‎)+20
    • El Salvador+503
    • Equatorial Guinea (Guinea Ecuatorial)+240
    • Eritrea+291
    • Estonia (Eesti)+372
    • Ethiopia+251
    • Falkland Islands (Islas Malvinas)+500
    • Faroe Islands (Føroyar)+298
    • Fiji+679
    • Finland (Suomi)+358
    • France+33
    • French Guiana (Guyane française)+594
    • French Polynesia (Polynésie française)+689
    • Gabon+241
    • Gambia+220
    • Georgia (საქართველო)+995
    • Germany (Deutschland)+49
    • Ghana (Gaana)+233
    • Gibraltar+350
    • Greece (Ελλάδα)+30
    • Greenland (Kalaallit Nunaat)+299
    • Grenada+1473
    • Guadeloupe+590
    • Guam+1671
    • Guatemala+502
    • Guernsey+44
    • Guinea (Guinée)+224
    • Guinea-Bissau (Guiné Bissau)+245
    • Guyana+592
    • Haiti+509
    • Honduras+504
    • Hong Kong (香港)+852
    • Hungary (Magyarország)+36
    • Iceland (Ísland)+354
    • India (भारत)+91
    • Indonesia+62
    • Iran (‫ایران‬‎)+98
    • Iraq (‫العراق‬‎)+964
    • Ireland+353
    • Isle of Man+44
    • Israel (‫ישראל‬‎)+972
    • Italy (Italia)+39
    • Jamaica+1
    • Japan (日本)+81
    • Jersey+44
    • Jordan (‫الأردن‬‎)+962
    • Kazakhstan (Казахстан)+7
    • Kenya+254
    • Kiribati+686
    • Kosovo+383
    • Kuwait (‫الكويت‬‎)+965
    • Kyrgyzstan (Кыргызстан)+996
    • Laos (ລາວ)+856
    • Latvia (Latvija)+371
    • Lebanon (‫لبنان‬‎)+961
    • Lesotho+266
    • Liberia+231
    • Libya (‫ليبيا‬‎)+218
    • Liechtenstein+423
    • Lithuania (Lietuva)+370
    • Luxembourg+352
    • Macau (澳門)+853
    • Macedonia (FYROM) (Македонија)+389
    • Madagascar (Madagasikara)+261
    • Malawi+265
    • Malaysia+60
    • Maldives+960
    • Mali+223
    • Malta+356
    • Marshall Islands+692
    • Martinique+596
    • Mauritania (‫موريتانيا‬‎)+222
    • Mauritius (Moris)+230
    • Mayotte+262
    • Mexico (México)+52
    • Micronesia+691
    • Moldova (Republica Moldova)+373
    • Monaco+377
    • Mongolia (Монгол)+976
    • Montenegro (Crna Gora)+382
    • Montserrat+1664
    • Morocco (‫المغرب‬‎)+212
    • Mozambique (Moçambique)+258
    • Myanmar (Burma) (မြန်မာ)+95
    • Namibia (Namibië)+264
    • Nauru+674
    • Nepal (नेपाल)+977
    • Netherlands (Nederland)+31
    • New Caledonia (Nouvelle-Calédonie)+687
    • New Zealand+64
    • Nicaragua+505
    • Niger (Nijar)+227
    • Nigeria+234
    • Niue+683
    • Norfolk Island+672
    • North Korea (조선 민주주의 인민 공화국)+850
    • Northern Mariana Islands+1670
    • Norway (Norge)+47
    • Oman (‫عُمان‬‎)+968
    • Pakistan (‫پاکستان‬‎)+92
    • Palau+680
    • Palestine (‫فلسطين‬‎)+970
    • Panama (Panamá)+507
    • Papua New Guinea+675
    • Paraguay+595
    • Peru (Perú)+51
    • Philippines+63
    • Poland (Polska)+48
    • Portugal+351
    • Puerto Rico+1
    • Qatar (‫قطر‬‎)+974
    • Réunion (La Réunion)+262
    • Romania (România)+40
    • Russia (Россия)+7
    • Rwanda+250
    • Saint Barthélemy+590
    • Saint Helena+290
    • Saint Kitts and Nevis+1869
    • Saint Lucia+1758
    • Saint Martin (Saint-Martin (partie française))+590
    • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
    • Saint Vincent and the Grenadines+1784
    • Samoa+685
    • San Marino+378
    • São Tomé and Príncipe (São Tomé e Príncipe)+239
    • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
    • Senegal (Sénégal)+221
    • Serbia (Србија)+381
    • Seychelles+248
    • Sierra Leone+232
    • Singapore+65
    • Sint Maarten+1721
    • Slovakia (Slovensko)+421
    • Slovenia (Slovenija)+386
    • Solomon Islands+677
    • Somalia (Soomaaliya)+252
    • South Africa+27
    • South Korea (대한민국)+82
    • South Sudan (‫جنوب السودان‬‎)+211
    • Spain (España)+34
    • Sri Lanka (ශ්‍රී ලංකාව)+94
    • Sudan (‫السودان‬‎)+249
    • Suriname+597
    • Svalbard and Jan Mayen+47
    • Swaziland+268
    • Sweden (Sverige)+46
    • Switzerland (Schweiz)+41
    • Syria (‫سوريا‬‎)+963
    • Taiwan (台灣)+886
    • Tajikistan+992
    • Tanzania+255
    • Thailand (ไทย)+66
    • Timor-Leste+670
    • Togo+228
    • Tokelau+690
    • Tonga+676
    • Trinidad and Tobago+1868
    • Tunisia (‫تونس‬‎)+216
    • Turkey (Türkiye)+90
    • Turkmenistan+993
    • Turks and Caicos Islands+1649
    • Tuvalu+688
    • U.S. Virgin Islands+1340
    • Uganda+256
    • Ukraine (Україна)+380
    • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
    • United Kingdom+44
    • United States+1
    • Uruguay+598
    • Uzbekistan (Oʻzbekiston)+998
    • Vanuatu+678
    • Vatican City (Città del Vaticano)+39
    • Venezuela+58
    • Vietnam (Việt Nam)+84
    • Wallis and Futuna (Wallis-et-Futuna)+681
    • Western Sahara (‫الصحراء الغربية‬‎)+212
    • Yemen (‫اليمن‬‎)+967
    • Zambia+260
    • Zimbabwe+263
    • Åland Islands+358